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Abstract We describe how an aggregation/disaggregation method for finding quasi-stationary distributions of continuous-time
Markov chains can be implemented on a massively parallel computer. The method is similar to an algebraic multigrid, using
resiriction operators that depend on the current iieration of the "solution”, and Jacobi smoothers at each level of the multigrid, The
method is itlustrated using a stmple epidemic model, and the performance compared 0 a sequential implementation as the size of
the population increases. We find that the paraliel implementation is superior in terms of time to convergence of the residual eryor.

although inferior in terms of iterations reguired.

1L INTRGDUCTION

Epidemics are essentiaily evanescent in nature, with eventual
extinction ceriain, if only bacanse the susceptible populalion
is eradicated. However, the time required for this (o oceur may
be very long, and the epidemic appears 10 observers to be in 4
stable state. This can be modelled by a continuous-time
Markov chain with an absorbing class, which is evanescent
on the remainder of the stale-space. In most praciical
applications the time to absorption is large, and we are
inleresied in predicting the apparently stable behaviour before
evanescence. The eguilibrivm distribution of the Markov
chain is of no use, being concentrated on the absorbing state.
Hence we use the guasi-stationary distribution, which is
basically the long-termn distribution, conditional on non-
absorpiion.

Finding the quasi-stationary distribution is equivalent o
finding the eigenvector ¢orresponding to the smallest
eigenvalue of the teansition-rate matrix, This has the
incidental benefiz of calculating this eigenvalue, which
determines the persisience time for the epidemic, If the mode!
is 10 be useful, the wansition matrix is usvally large, and
even approximating the process by truncating the matrix
teaves upwards of a hundred million ciements, Obviously,
numerical methods, efficient ones, are required.

A mulligrid-type method f(or determining the smallest
cigenvalue and associated cigenvector has recently been
developed and shown © be sequentiaily efficient for a large
class of problems {Stewart and Bebbington [19957). The
method is 2 natural candidate for implementation on a paraliel
machine, containing many inberently paraile! clements. We
will describe the algorilhm and its paralic! impiementation
and, using a simple epidemic model, compare its performance
with the sequential algorithm. Means of further improvement
will be briefly discussed.

2. QUASI-STATIONARY DISTRIBUTIONS

A contingous-time Markov chain is a stochastic process,
which al time ¢ is in a state X(De s, where & is a

countable state-space. 1T p, ()= Pr{X{ry={}, thes the
transition-rate mairix, or g-matrix, { is specified by
d
)= Q'ple; {1
L

where p(ry is the vector (p{1){ g §) and the prime denoics
the wranspose, The off-diagonal elements of § arc non-
negative, while the diagonal elements are non-positive. Now
let us suppose that T S is an irreducible gansient class,
that is, $=CuC where & is an absorbing set. If § is
finite then, under certain conditions, the g-matrix restricted (o
C has eigenvalucs with negative real parts, the eigenvaiue
with maximal real part is real and of multiplicity one, and the
corresponding left eigenvecwr, m={m,, j € Ci bas posilive
elries, Furiber, the stationary conditional quasi-stationary
distribution,

iy

i
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S,
kel
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Lje, exists (Darroch and Seneta [1967]). Thus, the
cigenveclor m, when normalised, is an estimaie of the long-
term probability of being in each state given that the process
s not yet been absorbed, and hence describes the apparent
pehaviour of the process to an observer. We note also that m
i the only felt cigenvector of the restricted g-matrix with all
posilive entries, and attracls trajectories on the space of
probability distributiong over .

When § is infinite, it is usual to truncate the restricted g-
malrix 0 an axna matrix Q' and construct a sequence
{m®} of corresponding left eigenvectors. The desired
accuracy in the guasi-stationary distribution is achieved by
making #1 as large as necessary (Tweedie [1973]).

3. MULTIGRID FOR M-MATRICES

Our objective is to find the lefi-cigenvector, corresponding 1o
the eigenvalue with maximal real part, of the transition-rate
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matrix restricted o the transient class. That is, we mustsolve
for x in the equation

XO=-ix {3y

while simultancously minimising A, subject to

Ax0,3 x=1

There are a number of technigues for computing extremal
eigenvalues and their coresponding eigenvector. I actorisalion
technigues are limited, with dense matrix methods, 1o smaller
seate Markoy chaing. Sparse manrix factorisation techniques,
while allowing larger chaios, also require additional memory
due Lo the non-zero eniries created by factordsation ("filkin"),
and are very difficult o parallelise. For these reasons, iterative
techniques are used o find quasi-statonary distribulions.
However, the sheer size of the problem (§ might contain
upwards of 10° non-zero clomentsy makes simple relaxation
schemes impracticable.

Siandard muitigrid methods are developed with the object of
solving systems of differential equat jons, The approach taken
here was developed for Markov chain eigenvalue problems by
Sewart {19021, and Stewart and Bebbinglon [1995], based on
e faet that —(2, which we shall henceforth denote a5 A, 3
a singular M-mairix (see, {or example, Sencta [1931]) with
non-negative colamn $ums.

In common with standard multigrié methods we must
construct & hierarchy of finite dimensional vector spaces
indexed by m, X", o mairix A" and corresponding
eigenvector ¥ e X on each space, restriction and
srolongation {or  interpolation} operalors (rgspectively
r, and p,) between spaces, and a smoother Gperaler S, on
each space. The most common muligrid algorithm is known
as the "V-gycle”, Beginning with data at the unaggregated, or
finesy, level, it progressively wansfors data 10 COUrser levels,
smoothing at each siep. Subsequently, this smoothed dala 18
used to update pm“rm‘sivclv finer fevels untl the ¥inest lovel
is again reached. This "down and up” procedure is often
visualised as a "V". The smoothing on pmﬂrm\w ely coarser
wridds reduces lower frequency Components of the error (sce, for
example, Hackbusch [T9851),

The basic Vecycle algodithm for finding the o igenvalue and
associated eigenvector of ap M-matrix cun be de cscribed inthe
following way:

function Veyeiel AL 3™ A, m)
repent v, times
(7 ) e 8 (AN 1A
PR S N & Al
if m#0 then
construct coarse-grid uperator 477 M
1 e po {Veyele(ATT 20 Am - 1, 3™
repeat Vv, times
(, Aritd } ) — SW{AEM) RL) /’[ }

return (5™, 4%

Tha restriction and prolongation operators are defined in the
context of & pair of "grids". The coarse grid is formed as a
systematic, pre-tefined, partition of the fine grid. Suppose the
fipe grid {level #1, say) can be partitioned as

= {Cr Gn,,...,{}',,}, where no i emply, and

i

G, G, =12 whenever | # . The coarse-grid vector 7, (X}

given by the restriction opersor is a - dimensional  vector
with COmponents

r u»ﬂx Z 1t--nl &)

ez,

When prolongating, the probability ig  distributed
proportionatgly 10 the (original) X values, and thus

o .
PV = (5

¥

kali,

where e (5. This is necessary i order Lo gnsure that a

carrest salution on a fner wrid is still cosrect after a V-cyele
H ,z‘j”" =0 for all je, then the prolongation operaiol
distributes the probability vniformly over & G,. Finally, the

coarse-grid matrix is the n>0n matrix ghven by

Loy ()
55 AR

b,

A!ij -l}(x(m)) (6)

This choice, of 4™ =r A™p ., is the Galetkin coarse-
grid operatoer, a standard ah(nu, inmu iijﬁal{i sojvers because of
its convergence and consistency propertics (Hackbusch
[1985]), Note that A gpust be calculaled anew At each
restriction step, is unchanged in the prolongation siep, and
{hat the matrix at the finest level is invariant.

The propertics of U aggregation/disag gregation procedure are
investigated hy Swewart and Bebbinglon [1993], where the
algorithm is shown o gonverge for a variety of models with
widely differing behaviours, Tt will sulfice for msr PUIPRISES 1O
ahserve tha i A™ ™ A wre such that A7 = A3,
where A is the smallest cigenvalue of A, then this
relationship is preserved by the restriction and prolongation
aperatoss, The same is necessanly wue of the smoother, and
o the solution (the cigenvector of A corresponding lo the
smaliest cigenvalue) is a fixed point of the mulitigrid
algorithm.

Since the operators above are defined beiween arids, complete
formulation of the algorithm now requirgs only a procedure
for partitioning the state-space, crealing a hierarchy of finer
and coarser grids, It is desirable in Markoy ¢hain models that
the states with the strongest interactions be lamped together
(see, for example, Cao and Stewart [1985], Meyer [1989]).
However, since the set of non-zero wansition rates is largely
wanslation invarian, and the models such that we usually
have only nearest-neighbour tansitions, it is appropriate o
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partition Lhe siate-space into sets of adjacent states. Since,
conform to the processor geomeiry of the machineg, the
runcated state space will be two-dimensional, the simplest
procadure is for each 2% 2 square of states in the fine grid to
form a single state in the coarse grid.

4, IMPLEMENTATION ON THE MASPAR MP-
1264 MACHINE

In this section we will discuss how the multigrid algorithm
operates on a 4006 (64 % &4) processor SIMI» machine,

A few rernarks about the geometry of the problem are now ia
order. Due to memory constrainls, the present program is
designed to handle up to (256 256) swates. Since this is
more than the number of processors we obviousty have two
regimes: Up to & certain level of the muitigrid each state has
sole occupangy of a processor, All levels below this are
equally fast. Above this level we must bave mullipie staies
on cach processor, hence we have cither a sequential clement
on gach processor, or sequential activation of processors
{depending on the altocation of states w0 processors), and the
speed decreases with increasing level, Conversely, at all
mualigrid ievels below 64364 states some of the processors
are unused doring the V-cycle, 1o the extent where at the
coarsest lovel only 4 processors out of the 4096 are in use.

For purposes of reference, in (erins of the grid structire
outlined above, level O will be the coarsest fevel with 2% 3
states, level 5 has 64 x 64 states, and level 7 is the [inest
level with 256 x 256 states. AL cach of level 6 and 7, staies
are indexed by an array.

The smoother will be the Jacobi simoother, as follows:

function (X, A3 = smoother{ £, A4 )
v Xl A
solve D= (L+Uyy+x for ¥
Te3113
. {1’)3)7'

where D, LI are respectively the diagonal, lower angular
and upper triangular parts of A. The smoother is obtained as
aJacobi iteradon of the lincar equations for the inverse power
method

Ap=x 1=/, ™

We ses that a natural consequence of the algorithin is the
determinaiion of the cigenvalue, the decay paramseter for he
process. That is, the probability that the epidemic is extant at
tme ¢ is of order ¢

The Jacobi smoother is uniquely suited to a paraliel
implementation singe it requires oaly one communicalion
with neighbouring sites, and all sites (or at least 4096 of
them) can be updated simultaneously, Towever, this is a

relatively inefficient sinoother, and in order not 1o degrade the
parallel efficiency of the procedure, we shall limit ourselves
on levels 6 and 7 o only one application of the smoother at
gach step, Le., v, =v,=1 (see also Section 7). The
optimam number of smoothing repetitions at the coarser
tevels will be the first aspect considered.

The matrix A and the (Hadamard-type product) matrix
B=A®x, defined by B, = A.x,, arc represented at each
point of the siate space by a one-dimensional array, indexed
by direction (1 = B, 2 = §, ct celera, the diagonal elements
having index 0} The interpolation operator (3) is simply
implemented. The restricdon operators (4) and (6) proceed as
follows:

function resiict (A0, xt
Xfm; . ,‘P”(‘}:["? })
e AlmD g g
for (]

[ L E3y) ()
AP e 3 B / X

kedd, u,

veturn { X' A"
Finally, the smoother operator is implemented as:

function smoother (A", X" 1)
Elm‘; — Aw:) ®‘Xum
for |

A e (i -3 8 /a} o

, Jaf

e gt gt
[#rr) L.imm}
A Z:}: AX
i I

(my n

refure { X7, A )

The algorithm termivates when the relative resicuad error,
lax = Axf, /{z]l,. becomes less than a specified tolerance,
psually 107, In the example following, the norm of the
matrix 4 is of the order of 107 10 107, and s0 a wermination
the residunls are of prder 1077 times the norn of the mairix.

5. TEST PROBLEM AND COMPUTATIOMAL
RESGLTS

Fach state will be a pair of nonnegative integers, {i, V).
Trancation is handled by setiing all transition rates out of the
runcated space equal o zero, corresponding to a reflecting
boundary. This is reasonable provided the bulk of the quask
stationary distribution is within the truncated state space.
However, the cigenvaiue computed will be arger than that lor
the full stale-space, since we omit the "tail” of ihe
distribution {urthest from the absorbing set.

Our example is the simple epidemic model of Ridler-Rowe
[1967). Here i is the number of people susceptible o a
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particular diseass, and v is the number of people infected (and
infective). If § = (u, v) then the non-zero transition rates are
f FY R
fo4 i = {u+1w)
iy =4 fuy j=u-1Lv+ 1 (&)
| iji=(uv=-1
Thus a susceptible becomes infected at rate Suv, an infective
recovers {(or dies) at raie w, and a new individoal becomes
susceptible at rale o, A sequential procedure for finding the
guasi-staionary distribution, based on the Arpoldi algorithm,
has recenty been developed by Pollett and Stewart {1944

The restriction operator (6) requires all non-zero values of
A,;"’". For the epidemic problem, at the finest level, there are
four non-zero components, the three given hy (8), and the exit
ratefs) Af,””. However, when using a rectanguiar grid with
disgonal transitions, there may be additional possible
ransitions at coarser levels, as Hustrated In Figore 1
infectives Transitions

Infection

Becoming
/’ susceplible

Finest Tirid

susceptibles

resiriction

V

infectives

a0 [HOW -
transitions

Comser Grid

o o io

susceplibles

Figure 1: Partitioning for the epidemic problem.
solid lines represent non-zero values of A, .

it is obvious {rom the rates (8) that {{w,v)v=0} is an
absorbing set, corresponding (0 the extincdon of the disease.
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The associated deterministic system of differential equations,

d d
PR ey = Ve s
P = — Buy » v = fuv— 9}

has {{u,v}:v:(}} as an ansiable invariant sei, while if
vy >0, the trajectory approaches the unique stable
equitibrium point (7,V)y={y/ B, x/y). Alihough, in the
Markov chain model, eventual absorpiion s certain,
irajectories will wsually remain in the neighbourhood of
(if,v) for long periods of time, as in figure 2.

80 5 T T T 3 T g T T

7Qr

DU 10 a0 30 a0 50 50 7 80 30 104
susceptiblas

Figure Z: A partial realisation of the simple

epidemic with o = 2025, =1, y=45.

it is this poisy behaviour around {(&,v) that the quasi-
stationary distribution, shown in Figure 3, describes.

igatives

susceptibles

Figure 3: The quasi-siationary distribution of the
epidemic mode! with o =2025 S=1, y=45, for
N=128. Conours are at 1077107107,
0.1,0.2,,..,0.9 of the maximum probability,

We will use this test problem o investigate the properties of
the parallel implementation. As mentioned in the previous
section, we have two distinct regimes, one in which the



smoother is a "single" parallel operation, and one ia which
the smoother contains sequential clements. Tn order o gain
maximum benefit from the parallelism (as opposed to the
algorithm), we will use only one smoother repetition ai
ievels 6 and 7. This leaves open the question of the optimum
number of smoothings at coarser levets, Table 1 gives the
number of V-cycles required, and the CPU time used, for the
epidemic model with parameters & = 2023, P=1 y=45 for
N = 64, and varying numbers of smoother repetiions.

Terations V-cyeles CPU (s}
1 32 57
2z 152 27
3 135 28
4 140 25
5 143 25
10 151 27
15 153 28

Table 1: Bifect of muliiple smoothing.

We see that maltiple smoothing is a very efficient (in terms
of time) operation at coarser levels. Tt also seoms from the
table that excessive smoothing is detrimental, probably due to
the effects on the coarsest ievels.

Having identified v, = v, =4 as an optimum pumber of
smoothing repetitions, we can now consider how the
algorithun performs with the epidemic problem given above,
for varying values of N. For comparison, we provide
performance detsils of ihe sequential implementation with the
Gauss-Seidel smoother [(Stewarl and Bebbington [1995]). The
parallel implementation was on the MasPar MP-1204
maching (peak performance 135 MEPlops), and the sequential
implementation on a SPARC 14 (peak performance 10
MFlops)., However, we are really interested in how the
performance of the parallel and sequential versions vary with
N . Hence we allow each version those advantages inherent (o
them, notably 8 more powerlul smoother for the sequeniial,
and muliiple smoothing at coarser levels for the paraliel.
{her improvements should apply more or less equally.

Parallel {Jacobi)

Sequential (Guuss-Seided)

N A Veeveles 2P (5} Vogyeles P (s}
o 88710 140 25 105 36
128 4.66%107° 1249 24 126 152
256 421107 205 38 133 791

Table 2: Dependence of convergence on V. Noter The sequential implementation with the Jacobi smoother takes
2.5 1 3 times as long o converge as thit with the Gauss-Seidel smoother. Using muitiple smoothing iterations in
the sequentiai implementation resuits in 4 speed-up of 10% or 50 (and a 40% reduction in V-cycles).

From Table 2 we observe that using only one repetition of
the smoother at the Tiner levels, and the fess powerful
smoother, affects the number of V-cyeles required . Unlike the
sequential case, where the number required increases only
slowly with N, the paralicl implementation requires half
again as many cycles when increasing N from 128 to 256.
On the other baed, the computation time, as opposed {0
iterations, does not exhibit the geometric increase of (he
sequential case. An alterpalive sequential algorithm with
differing bebaviour is the iterative Arnoldi method of Polleit
and Stewart [1994], although the criteria for convergence arg
not well undersiond at present. This can also be used as a
smoother in the V-cycle (see Siewart and Bebbington [1943]).

Some unexplained variations in Table 2 are at least purtly due
10 the rruncation of the stale space, and hence of the mairix
A, as is indicated by Table 3. Here we have again used (he
epidemic problem with B=1, but now the remaining
parametess are chosen so that (F,7)= (¥ /4, N /4y,

N A Vooyeles Cru (s)
64 344 %107 120 22
128 2.88x 107 132 24
256 7.05% 107 181 32

Table 3: Effect of (&, ¥} on the speed of the parallel
implementation.

Stewart [ 19921 indicates that 1he rate of convergence for the
sequential implemeniation is roughly proportional i/ﬁ
when (7, V) i scaled proportionaily to N, Here we sce that
the Jarger problems converge faster than one would expect,
hecause the processors are tdle less. Tables 2 and 3 would also
seem Lo indicate that the alzorithm does not snffer from
fhaving only one smoother repetition at the finest level, the
increase in V-cycles occurring when a second level with
single smoothing is introduced.

6. COMNCLUSIONS

We have seen in the previous section that our two objectives,
paraile] and numerical efficiency, are somewhat opposed, A
policy of minimising sequential elements hampers
convergence, increasing the number of licrations required.

N 54 128 256
Speed-up 042 057 135

Table 4: "Speed-up” from paralle] implementation,
calculated from Table 2 and Table 3.

Taking the relative machine performances into account, we
see in Table 4 that the parallel implementation becomes
efficient as & increases, partly because the processors are
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“busier”. but largely because the sequential implementation
becomes slower geometrically. However, at some point the
scquential elements on the finer grids of the parallel version
will produce an effect.

7. EXTENSIONS AND OTHER MODELS

[t is possible to accelerate the algorithm by using a W-cycle
rather than a V-cycle. This is based oun the fact that
smoothing on the coarser grids has a greater effect than
smoothing on the finer grids, The Vecvele is so called because
the cigenveclor is restricted down 1o tie coarsest level, and
then prolongated back (o the finest level. If, instead, we only
prolongate partway back o the finest level, and then restrict
again, evenfually returning w the finest level, we produce a
“coarse-grid intensive”, or Wecycle, as shown in Figure 4.

3 3 3

NN
AR WA/
AVARRRVARV/

Figure 4 Left, a V-cycle, and right, a 30203 W-cyele

3

Labeling these cycles in the obvicus notation (e g,
TOR0503G7 restricts from level 7 o level 0, Profongates (o
level 3, restricts back 1o fevel O and so ond, Table S shows
the effect of varicus Weeycles for the epidemic process with
N=236, B=11=V=45.

W-cvele cveles CPU ()
703050307 193 35
TG5030507 178 iz
735030537 182 33
705050307 171 33

70503030507 173 31
{V-cyele) 205 38

Table 5: Hifect of W-cyeles

The small improvement, on the order of 15%, is partly due «

the fact that our implementation is alrcady "coarse- Grui
intensive”. Also, in order for the W ~cycle w work well, the
Vecycle must converge at a sulficiently fast rate {Hackbusch
{19851y, a requirement difficelt w0 achieve with the Jacobi
smoother,

Although the Jacobi smoother is suited 1o parallel
impiementation, it is alsc possible o use a muld-colour
Gauss-Seidel smoother (Hackbuseh [1985]). This uscs the
Gauss-Seide! smoother, but in a single "pass” apdales only
those siles which have no communication with each other in
the form of non-zero transition rates. We see from I igure §
that the epidemic model will therefore require 3 passes in
order o update all the siles. An obvious potential
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improvement is to use the multicolour Ganss-Seidel at the
finest (levels 5 and 7) levels, and JTacobi below this,

The algorithm kas been tested on a number of other two-
dimensional problems. Among these are the Ross malaria
model {see Nisell [1991]), the cancer model of Bartoszynski
and Purt [1983], predator- prey and competition models. The
cubic avtocatalator model (Gray and Scou {19841 also
demonstrated that the a]gonthm could handle multimodal
distributions (Siewart and Bebbington (19951

CENOWLEDGMENTS

I would like to thank David Stewart for many fruitfyl
discussions, and Phil Pollett for his helpful suggestions, This
worked was funded by The Australian Research Comneil.

REFEREMNCES

Bartoszynski, 8., and Puri, P.S., On two classes of
inieracting slochastic processes arising in cancer
madeling, 7 Appl Prob., 15, 695-712. 1983,

Cao,  W., and Stewart, W.1.. licrative
aggregation/disaggregation techoiques for nearly uncoupled
Markoy chains, L4,.C.M., 32, 702-719, 1985,

Darroch, .M., and Senets, E., On quasi-stationary
distributions in absorbing continuous-time {inite Markov
chains, J Appl. Prob,, 4, 192-196, 1967,

Gray, P, and Scotl, $.K., Autocatalytc reactions in the
C8TR: mullauonx and instabilities in the system
A+2B ey 3B, B C, Chen, Eng. Seci., 39, 1087-1007,
1934,

Hackbusch, W, Mulii-Grid Methods and Applications,
Springer-Yerlag, Berlin, 1983,

Meyer, 0., Stochastic complementation, uncoupling
Markov chains and the theory of  nearly seducible
systems, SIAM Review, 3/, 240-272, 1949,

Mascl, I, On the stationary distribution of the Ross mataria
madel, Marh. Biosciences, 107, 187-207, 1991,

Pollett, P.K., and Stewart, D.E., An efficient procedure for
computing quasi-stationary distributions of Markoy chains
with sparse lransition sirocture, Adv. Appl. Prok., 26, 68-
79, 1994,

Ridler-Rowe, C.1., On a stochastic model of an epidemic, J.
Appl, Prob., 4, 19-33, 1967,

Seneta, B, Non-negative Marrices and Markoy Chains, 2nd
ed, Springer-Verlag, New York, 1981,

Stewart, D, A multigrid method for computing quasi-
Stationary distributions of continuous-time Markoy
chaing, ANU Advanced Computation Report ACTR-6-04-
1992, 1992,

Stewart, D.E., and Bebbington, M.S., An iterative
aggregation/disaggregation procedure for modelling the
long term behaviowr of continuous-time evancscent
random ;wceqscs Submiticd for Pablication, 1993,

Tweedie, RL., The calculalion of limit probabidities for
denumerable Markov processes from infigitesimal
properiics, J. Appl. Prob., 10, 84-99, 1973,



